| 1. | Functions of complex variables integral transformation 复变函数与积分变换 |
| 2. | Functions of complex variables integral transformation 复变函数与积分变换 |
| 3. | Functions of complex variables integral transformations 复变函数与积分变 |
| 4. | Integral transformation mathematical equations 积分变换及数理方程 |
| 5. | Integral transformation mathematical equations 积分变换及数理方程 |
| 6. | Integral transformation control engineering 积分变换控制工程 |
| 7. | Integral transformation control engineering 积分变换控制工程 |
| 8. | Property of jacobi matrix and theorem of geometric integral transformation 矩阵的性质与几何体上积分变换定理 |
| 9. | 2 . under the condition that the layered soil surrounding pile can be simulated with general voigt model or general maxwell model , the mathematical equations for longitudinal vibration of a pile with self - viscosity is established in the form of integral transformation , and the corresponding solution is obtained by using impedance function 2 、分别建立了桩侧土为广义voigt模型和广义maxwell模型条件下考虑桩身材料阻尼的成层地基中桩纵向振动的积分变换形式定解问题,并采用阻抗函数递推法得到了相应解。 |
| 10. | The spectral analysis of non - orthogonal functions cannot be obtained by orthogonal integration method . only the spectral analysis of some particular non - orthogonal functions can be realized by integral transformation . thus , the concept of reflection matrix is proposed and the mirror symmetry of spectral analysis for non - orthogonal function is revealed . any element functions whose reflection matrix can be obtained possesses its inverse element function . the spectral vector corresponding to an element function possesses its inverse spectral vector corresponding to the inverse element function . by reflection matrix the mapping relation of element function pair and spectral vector pair can be established . spectral analysis of non - orthogonal functions can be obtained with this symmetry by using the integration method as in the case of orthogonal functions , instead of calculating the inverse matrix as usual . so a convenient and practical method for spectral analysis of non - orthogonal functions is offered 非正交函数不能利用正交积分来实现谱分解.仅有某些特殊的非正交函数可以通过积分变换实现谱分解.本文提出了反射阵的概念,揭示了非正交函数谱分析的镜像对称性.任何能够建立起反射阵的元函数存在着它的逆元函数,并且任何基于该元函数的谱向量同时也存在着基于逆元函数的逆谱向量.元函数对与谱向量对通过反射阵建立映射关系.利用这种对称性,非正交函数可以象正交函数一样使用积分方法获得谱分解结果,而不必使用求解逆阵的方法,从而为非正交函数的谱分解提供了便捷、实用的方法 |